Skip to main content
Log in

Designing a hierarchical model-predictive controller for tracking an unknown ground moving target using a 6-DOF quad-rotor

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a hierarchical predictive controller is designed in order to solve the tracking problem of a moving ground target by a quad-rotor in an unknown and uneven environment. This controller has internal and external predictive controller levels. In the lower layer of the controller, a constrained predictive controller is designed that is capable of rejecting perturbations and quickly tracking the reference path, and in the outer loop, a model predictive controller is designed to optimally detect the moving ground target where, the sub-cost functions were defined so that the quad-rotor would be able to track the moving ground target even if it was temporarily out of sight of the flying robot, as well as in the event of sudden direction changes and uneven path. In this method, since there is no need to switch between different controllers and not having to engage in delusional maneuvers of the target, the total control effort is reduced, which was shown in the simulations by the indifference reactions and shortening of the path of the quad-rotor. Finally, the tracking problem is simulated in the MATLAB to show the effectiveness of the proposed controllers, and the results are compared with that of a benchmark controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gomez-Balderas J-E, Flores G, Carrillo LG, Lozano R (2013) Tracking a ground moving target with a quadrotor using switching control. J Intell Rob Syst 70(1–4):65–78

    Article  Google Scholar 

  2. Eisenbeiß H (2009) UAV photogrammetry. ETH Zurich

  3. Rezaei M (2014) Dynamic modeling, simulation and control of a quadrotor using MEMS sensors’ experimental data. Modares Mech Eng 14(3):176–184

    Google Scholar 

  4. Bouabdallah S, Murrieri P, Siegwart R (2004) Design and control of an indoor micro quadrotor. In: IEEE international conference on robotics and automation. Proceedings. ICRA’04. 2004. IEEE, pp 4393–4398

  5. Tayebi A, McGilvray S (2004) Attitude stabilization of a four-rotor aerial robot. In: 2004 43rd IEEE conference on decision and control (CDC) (IEEE Cat. No. 04CH37601), 2004. IEEE, pp 1216–1221

  6. Nourimotlagh M, Safarpour P, Pourgholi M (2016) Dynamic modeling, simulation and control of a quadrotor using feedback linearization and PID controller based on MEMS sensors’ experimental dat. Modares Mech Eng 16(12):175–185

    Google Scholar 

  7. Chehadeh MS, Boiko I (2019) Design of rules for in-flight non-parametric tuning of PID controllers for unmanned aerial vehicles. J Franklin Inst 356(1):474–491

    Article  MathSciNet  Google Scholar 

  8. Mahmoodabadi MJ, Rezaee BN (2020) Fuzzy adaptive robust proportional–integral–derivative control optimized by the multi-objective grasshopper optimization algorithm for a nonlinear quadrotor. J Vib Control 1077:546319901019

    Google Scholar 

  9. Qing L, Wei G, Yuping L, Chunlin S (1997) Aircraft route optimization using genetic algorithms. Science 5:69

    Google Scholar 

  10. Zuo Z (2013) Adaptive trajectory tracking control design with command filtered compensation for a quadrotor. J Vib Control 19(1):94–108

    Article  MathSciNet  Google Scholar 

  11. Nadda S, Swarup A (2018) Decoupled control design for robust performance of quadrotor. Int J Dyn Control 6(3):1367–1375

    Article  MathSciNet  Google Scholar 

  12. Bertrand S, Guénard N, Hamel T, Piet-Lahanier H, Eck L (2011) A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng Pract 19(10):1099–1108

    Article  Google Scholar 

  13. Liu H, Bai Y, Lu G, Shi Z, Zhong Y (2014) Robust tracking control of a quadrotor helicopter. J Intell Rob Syst 75(3–4):595–608

    Article  Google Scholar 

  14. Xian B, Diao C, Zhao B, Zhang Y (2015) Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dyn 79(4):2735–2752

    Article  MathSciNet  Google Scholar 

  15. Kamel M, Stastny T, Alexis K, Siegwart R (2017) Model predictive control for trajectory tracking of unmanned aerial vehicles using robot operating system. In: Robot operating system (ROS). Springer, pp 3–39

  16. Castillo P, Dzul A, Lozano R (2004) Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans Control Syst Technol 12(4):510–516

    Article  Google Scholar 

  17. Tan CK, Wang J, Paw YC, Ng TY (2016) Tracking of a moving ground target by a quadrotor using a backstepping approach based on a full state cascaded dynamics. Appl Soft Comput 47:47–62

    Article  Google Scholar 

  18. Lee S-O, Cho Y-J, Hwang-Bo M, You B-J, Oh S-R (2000) A stable target-tracking control for unicycle mobile robots. In: Proceedings. 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS 2000) (Cat. No. 00CH37113). IEEE, pp 1822–1827

  19. Nelson DR, Barber DB, McLain TW, Beard RW (2007) Vector field path following for miniature air vehicles. IEEE Trans Rob 23(3):519–529

    Article  Google Scholar 

  20. Nadda S, Swarup A (2018) On adaptive sliding mode control for improved quadrotor tracking. J Vib Control 24(14):3219–3230

    Article  MathSciNet  Google Scholar 

  21. Gao Q, Cepeda-Gomez R, Olgac N (2014) A test platform for cognitive delays: target tracking problem with multiple time-delayed feedback control. Int J Dyn Control 2(1):77–85

    Article  Google Scholar 

  22. Shi D, Wu Z, Chou W (2019) Anti-disturbance trajectory tracking of quadrotor vehicles via generalized extended state observer. J Vib Control 1077:546319892752

    Google Scholar 

  23. Li Z, Ma X, Li Y (2020) Robust trajectory tracking control for a quadrotor subject to disturbances and model uncertainties. Int J Syst Sci 6:1–13

    MathSciNet  Google Scholar 

  24. Alexis K, Nikolakopoulos G, Tzes A (2014) On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances. Asian J Control 16(1):209–224

    Article  MathSciNet  Google Scholar 

  25. Eskandarpour A, Sharf IJND (2020) A constrained error-based MPC for path following of quadrotor with stability analysis. Science 99(2):899–918

    MATH  Google Scholar 

  26. Yang J, Liu C, Coombes M, Yan Y, Chen W-HJIToCST (2020) Optimal path following for small fixed-wing UAVs under wind disturbances

  27. Rascón-Enríquez J, García-Delgado LA, Noriega JR, García-Juárez A, Espinoza ESJE (2020) Tracking Control for Quad-Rotor Using Velocity Field and Obstacle Avoidance Based on Hydrodynamics. Science 9(2):233

    Google Scholar 

  28. Baek SS, Kwon H, Yoder JA, Pack D (2013) Optimal path planning of a target-following fixed-wing UAV using sequential decision processes. In: 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 2955–2962

  29. Chen J, Liu T, Shen S (2016) Tracking a moving target in cluttered environments using a quadrotor. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 446–453

  30. Templeton T, Shim DH, Geyer C, Sastry SS (2007) Autonomous vision-based landing and terrain mapping using an MPC-controlled unmanned rotorcraft. In: Proceedings 2007 IEEE international conference on robotics and automation. IEEE, pp 1349–1356

  31. Raffo GV, Ortega MG, Rubio FR (2010) An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter. Automatica 46(1):29–39

    Article  MathSciNet  Google Scholar 

  32. Alexis K, Nikolakopoulos G, Tzes A (2011) Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng Pract 19(10):1195–1207

    Article  Google Scholar 

  33. Das A, Subbarao K, Lewis F (2009) Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Control Theory Appl 3(3):303–314

    Article  MathSciNet  Google Scholar 

  34. Pollini L, Metrangolo A (2008) Simulation and robust backstepping control of a quadrotor aircraft. In: AIAA modeling and simulation technologies conference and exhibit, p 6363

  35. Zuo Z (2010) Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl 4(11):2343–2355

    Article  MathSciNet  Google Scholar 

  36. Gong X, Bai Y, Hou Z, Zhao C, Tian Y, Sun Q (2012) Backstepping sliding mode tracking control of quad-rotor under input saturation. Int J Intell Comput Cybern 6:19222

    MathSciNet  Google Scholar 

  37. Raffo GV, Ortega MG, Rubio FR (2008) Backstepping/nonlinear H∞ control for path tracking of a quadrotor unmanned aerial vehicle. In: 2008 American control conference. IEEE, pp 3356–3361

  38. Camacho EF, Alba CB (2013) Model predictive control. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouya Badri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khankalantary, S., Badri, P. & Mohammadkhani, H. Designing a hierarchical model-predictive controller for tracking an unknown ground moving target using a 6-DOF quad-rotor. Int. J. Dynam. Control 9, 985–999 (2021). https://doi.org/10.1007/s40435-020-00705-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00705-z

Keywords

Navigation